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Solutions are obtained for the heat conduction equation in the case
when the thermal conductivity is a homogeneous function of the co-
ordinates.

Many problems of mathematical physics reduce to
integration of the following differential equation:

A%:div(Kgrad(p)+B<p+C, 1)

where the coefficients A, B, C, and K and the desired
function ¢ depend on all the coordinates and on time.

The majority of solutions of Eq. (1) published in
the literature has been obtained under conditions where
A, B, C, and K are constants.

The objective of the present paper is to determine
exact particular solutions of (1) under the condition
where less rigorous restrictions are imposed on the
coefficients of the equation.

It is known [1] that integration of (1) does not pre-
sent special difficulty if the desired function and the
coefficients depend on one space variable, i.e., when
(1) has the form

99 1 90 (., O¢
Al at Br( K19 ar)+
+B(r,tyo+ C(r, 9, 2)

wheren=0for r =x;n=1 for r = (x%+ yz)l/zandn=
=2 for r = (x+ y2+ z31/2

We shall show that Eq. (1) reduces to an equation
analogous to (2), not only when the coefficients A, B,
C, and K depend ounly on v and t, but also in the more

general case.
Let coefficients A, B, and C be represented by the

following relations:

A=a(r,)K; B=b(r,H)K; C=c(r,t)K, (3)

where K = K(x, v, 2) is a homogeneous function of de~
gree m,

xK, + 4K, + 2K, = mK (x, y, 2). )
If ¢ = @(r,t), the operator
L{p) = div (K grad ¢) (5)

reduces under condition (4) to the form

& 2 0
L(g) = (a—r(f —ﬁ;—— ch—) K, y,2. (®)

Taking account of (3)—(6), we obtain the equation

09 _Pg m+2 dg

e ot 67 r or

+bo+e (7)

Equation (7) does not depend.on the specific form
of the function K(x,v,z), but only on the exponent of
the homogeneity, For example, we may take the func-
tion K in the form

K(%y,2) = Y aunyizt, i+j+k=m,
i,j.k

L k=0,1,2..., (8)

where aijk are arbitrary constants.

The final number of constants ajj) does not permit
a full description of any inhomogeneous medium, but
since the exponent of homogeneity m may be any real
number, it may be taken to be large enough to allow
the inhomogeneity of the medium to be taken into
account with sufficient accuracy in a number of cases.

Let (8¢/8t) = 0 (a stationary problem) and B=C =
= 0. Then Eq. (7) takes the form

2
Po, m+2 do _ (9)
dr? r dr

The solution of this equation will be a function de-
pending on two arbitrary constants

@(r) =Cyr—"th 4 C,. (10)

For m = 0 we obtain the well-known special solution of
the Laplace equation, which is simultaneously also a
solution of the equation

L(K‘l‘ll>+i(1<§£&)+i.(1<@£&)=o; (11)
Ox ox dy dy 0z 0z
K(x,y, z) is any homogeneous function of degree.
Example. We shall determine the radial heat flux
in a hollow sphere, if the surface r = r, has tempera-
ture ¢y, and the surface r = r, has temperature ¢..
The thermal conductivity is a uniform function of de~
gree m. These requirement are satisfied by the func-
tion

it (o — ) [ 1 1
(p(r).—.-. 1 2 (q)l "pZ) (

Tt prFl T ) Tee (12)

It is interesting that the temperature distribution does
not depend on the specific form of the thermal con-
ductivity, but depends only on the exponent of unifor-
mity.

The total heat flux is determined from the formula

25 14
- —-SdQSK(r,@, «p)%irﬂ singpdy.  (13)
r
0 0
Hence, it may be seen that Q depends on the specific

form of the thermal conductivity. If, for example,

K@,y g=oaxm LBy +vya*, n=01,2,..., (14)
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where «, B, ¥ are arbitrary constants, then

At (@ — @q) P rpt!

2

Q= 72T 3] — @+ + ). (15)

Various known methods of mathematical physics
{the Fourier method, the method of eigenfunctions,
etc.) may be used in integration of (7) in the general case.

If the coefficients @, b, and ¢ of (7) are functions
of r only, we may seek a sclution in the form

o(r,ty=u(r.t)+v(r), (16)

where the functions u and v satisfy the equation

u  u m+2 au
gr Y% b 17
afn) 2= =2 L b, )
and
2,
ﬂ+_”1_ﬂ_iﬂ+bv+c(r)=o, (18)
dr? r dr

Separating the variables in (17), we obtain
ulr, t) = wur) exp (—At), 19)
where A is a constant, and w(r) is the solution of the
equation
w m-2
- T
or* r

% brraw=0.  (20)
or

The substitution
m+2
w(r)y=r

9 () 21

reduces to the integration of the following equa-

tion
dazy mm 4 2)
ay o) — 2T E L alu=0. @22
dr2+[ ()~ hay (22)
Wishing to obtain simpler eigenfunctions, we shall
confine attention to the particular case of
a=a, b(r)= %fn (m+2)r-2, hay=0al, (23)
where a; and oy are arbitrary constants. Then the
solution of (22) will be

P (r) = Ay, cos a1 -+ By sin a7 (24)
The general solution of (18), under the condition that

b(r) is determined by (23} and c(r) is any function of
r, has the form

N w __m+2
z)(r)::(D1+jr z c(r)dr)r Ln
2 _
+(D2——5r 2 c(r)dr)r 2 (25)

where Dy and D; are arbitrary constants. In the spe~
cial case when ¢ = ¢yrh, we obtain

m+-2 m
% nt2

=Dyr 2 4Dyr 2 :
o(ry=Dyr + D, 6(6—1)r

286 =m 4 2n + 6. (26)
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Because of the linearity of Eq. (7), the solutions ob-
tained are additive.. Finally we obtain

m+4 m+2

o n=(Dut [r7 car)r 7+

. Tz _m
+(D2—-jr2 c(r)dr)r s
m4-2

47 “—2(.4,z cos a, r 4 By sina, r) exp (—~ t) 27)

The arbitrary constants D, D, Aj and By must be
determined from the boundary and initial conditions.

As an example we shall examine a spherical shell,
on the outer surface of which a constant temperature
of zero is maintained, and a constant temperature T
on the internal surface. This leads to the following
boundary conditions:

¢=0, r=r;

(p=T, r == Trq. (28)

With ¢ = ¢, the solution

Ty - [

glr,fy==D,r g
?0n =D 56 —1)

_'ﬁtz'r" :
EMksmak (r —ry) exp (_._._f ) (29)

satisfies these boundary conditions, where

G =L 50,1

=7y

1
8 — D.r,,
6(6'—— 1) 1 291
m+42
Tr7+ ! (r5——r5)
21
Dy= 86 —1) . (30)

ro—13

The constant coefficient My must be determined from
the initial condition

(P[t=0 = f(r). (31)

The problem of determining M), from condition (31)
does not present any particular difficulty.

If we put m and ¢, equal to zero in (29) (this implies
that b and ¢ are equal to zero in (7)) and take the ini-
tial condition in the form

Qlemo =T, (32)

we obtain the well-known solution of the equation

d 0 20
de _ e 209

) (33)
ot or? r or

g

which has the form

T k
(p(r,t)=,.fz_(_@_1) E COS R 7 %
r—ra\ r — kr
2
X sinay, (r — r,) exp ( S \) (34)



192

We note that in the case of two dimensions (r =

= (x2 +y )1/2), m + 2 should be replaced by m + 1 in

Eq. (7).
For a region with ¢ylindrical symmetry, we are
interested in a solution of the form
p=g¢p,2,8), p=Vr+ 4 (35)

We shall impose the following restrictions on the coef-
ficients A, B, C and K:

A=alp,2,)K; B=0b(p,2,) K; C=c(p, 2 )K;
5K, + yK, = mK (z, ) @6

The operator L(¢) in this case takes the form

& Fo
L(cp) A +I_Tl_i_l Q& P 37

while Eq. (1) reduces to the following:

dp 0@  m+l acp Fo b
- c. (38
YRR o + P 9+c (38)

a

Although this equation is simpler than the original, it
is, however, sufficiently complicated that it cannot
be integrated for any a, b, and ¢. Bearing in mindthat
we wish to apply the method of separation of variables
later on, we shall consider that a and b are functions
of only the variable z.

In order to eliminate the variable t, we may apply
a Laplace transformation

fexp(—polp,2.0dt=polp,2) — 9 (39)
0

Then Eq. (38), for g, =0 and ¢ = 0, takes the form
- Po m+lag & (p
a(z)p<p~—pa+——p— 73—“+—(3—~ b(@)g. (40)
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Let &(p,2z) = f(p)i (z); then it follows from (40) that

ﬂ m+1 df dﬂp . _
(dp2+ )/f+( b pa]lp\)/lp 0. (41

Hence to determine f(p) and §(z) we obtain two ordinary
differential equations:

d*y b . 0
Ez—;+u(zw=0, p(2)=b()—pa(z) = A (42)

and
2
6f+m+l df_‘_)\?]c —0. 43)
do* o dp
The solution of (43), depending on the sign of A% has
the form

Znp2 (Ap)

, 44)
Z sz (E00)

fp) = prm2

where Z (%) is a linear combination of Bessel functions
of the first and second kind, of imaginary or realargu-
ment. ‘

A large number of exact solutions is known for Eq.
42) for specific form of the coefficient p(z).

‘Because of the linearity of (40), the solution ob-
tained may be added, which allows solution of quite a
large class of boundary problems.
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